第71页

它给了人空前的可能,也给了人无尽的困惑。

就像人类无法摸清大脑的工作原理一样,他们同样无法摸清ai的工作原理。

训练ai这种方式为何能行?它是如何学的?信息存在哪里?为何下此判断?不知道。

它好像在玄幻境界。码工时常觉得自己正在养蛊,贼刺激,给蛊虫喂个这个、喂个那个,一掀盖子,嚯,出来一个超厉害的东东!

有人说,让ai向人解释一个东西,相当于让人向狗解释一个东西,听着so sad。

人类历史充分表明,只有一个决策可以解释、分析,人才可以了解它的优点缺陷,评估风险,知道它在多大程度能被信赖。

很多专家说过“必须质疑人工智能为何做出一个决定”“难道,无人汽车每回出事,企业都说不知原因、ai让它这么干的?”

何况,不幸的是,如同大脑会出错,ai也会出错。

于是问题来了:我们能信任ai吗?我们能在多大程度上相信ai?我们能在生死攸关时信任ai吗?

当然,也有学者表示:“它能做到就足够了!”“大脑一直为你工作,你也一直都信任它,即使并不知道它是如何工作的。”

目前,各国科学家正致力解开黑箱,政府、行业协会也对此有要求,已经取得一些成果——不少东西都是数学。

阮思澄是一直觉得,这种现象十分正常,没有那么邪乎。在人类的文明当中,往往实践先于理论。比如,老祖宗在打造刀剑时、发明火-药时,清楚地知道原理吗?no!都是东西先出来了,能work了,大家才开始研究原因。

ai也是啊!慢慢来嘛。

不过,虽然如此,攻城狮们写程序时,也能根据他人经验,知道大概该怎么做。ai能自己学,但是,攻城狮们需要设置许多参数,比如用哪一种激活函数;如何搭建网络结构;分别设置多少卷积层、池化层、全连接层,如何排列架构;用多少个卷积层;用哪一个池化方式;选择多大以及多少卷积核、多大卷积步长和池化步长、多大学习率,又分别从哪层开始、到哪层结束[注]。也因为没道理可讲,各种奇奇怪怪的结构都有了。层数绝非越多越好,层数越多,说明运行时间越长、传递错误几率越大。

出于这个原因,对算法的调整、修改,经常就是瞎jb试,比较最终结果。

调参数能有效还好,数据也有可能不行!要知道,输入数据的大小、像素、嗓声、甚至亮度和对比度、翻转变换、旋转变换、位移都可以对最终结果产生影响!为啥?还是,不知道。